命題24. もし,立体が平行な平面でかこまれるならば,そのときそれに向かい合った平面は等しく平行四辺形である。 立体CDHDは平行な平面AC,GF,AH,DF,BF,AEで囲ま 
如圖4,△ABC 中,已知DF // AE, AD: DC =2:1, EC =GD =15,. 若BE=8,則BG =? . (2) 求四邊形ABME 與的平行四邊形ABCD 面積比____(H)_____。 3.
(A) AD =3, DB =4, AE =6, EC =8 (B) AD =4, AB =9, AE =8, AC =18 . 如右圖,△ABC 中DE // BC, EF // CD,則AD =6, BD =3,求DF 的長度為何? 右圖為平行四邊形ABCD 與△AEF 的重疊情形,其中E 是AB 的中點,D 在AF 上。
在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F; 求证:DF=DC. 魔方格. 2答案(表抄答案,解析更重要>戳这). 魔方格 证明:连接DE.(1分) ∵AD=AE 
题型一平行四边形的判定 【例1】 (2010·恩施)如图,已知,在▱ABCD中,AE=CF,M、N分别是BE、DF的中点。求证:四边形MFNE是平行四边形。 解证明:由平行四边形 
2011年1月13日 在平行四边形ABCD 中,BN=DM,BE=DF,求证:四边形MENF 是平行四边形. 3.如图,在□ABCD 中,E、F 分别是BC、AD 上的点,且AE∥CF,AE 
事實上,. 平行線所截出的線段會成比例,稱為平行線截比例線段性質。 ̅̅̅̅//BC. ̅̅̅̅,且AD. ̅̅̅̅:DF. ̅̅̅̅:FB. ̅̅̅̅=3:2:3,則. (1) AE. ̅̅̅̅:EG.
2016年6月30日 如右圖,L1 // L2, AE 交CD 於F 點,△ADF、△BDE、△DEF 與△CFE 的面積 如圖,P 為平行四邊形ABCD 內部一點,若△APB 面積為8,△CPD 
(A) AD =3, DB =4, AE =6, EC =8 (B) AD =4, AB =9, AE =8, AC =18 . 如右圖,△ABC 中DE // BC, EF // CD,則AD =6, BD =3,求DF 的長度為何? 右圖為平行四邊形ABCD 與△AEF 的重疊情形,其中E 是AB 的中點,D 在AF 上。
AH BG CF DE,求. : : AB BC CD ? = 練習7:如下圖,. //. BE DF,且2. 3,2. 3. AG. GD BD. CD. = =,求. : : AE EF FC = ? 練習7:平行四邊形ABCD 中,. 6,. 4,. 4,. 6.
IE'平行OE(均垂直於AB),同理IG'平行OG → 若AE'<AE則DF'<DF__?(0) 又角平分線角兩邊等距離﹕BE+CF=BC, AE'+DF'=AD______(1) 又兩組 
BC平行DE、BE平行DFだから三角形と比の定理より. AD:AB=AE:AC AD:AB=AF:AE よって. AE:AC=AF:AE AE^2=AF・AC.
2011年1月13日 在平行四边形ABCD 中,BN=DM,BE=DF,求证:四边形MENF 是平行四边形. 3.如图,在□ABCD 中,E、F 分别是BC、AD 上的点,且AE∥CF,AE 
2010年5月23日 求证:平行四边形两条对角线的平方和等于它的四边的平_剑圣陆青山_ 逆时针标注B、C、D)中,做高AE⊥BC于E,DF⊥BC于F,则BE=CF,AE=DF
如图,在平行四边形ABCD中,AE,BF分别平分∠DAB和∠ABC,交CD于点E,F,AE,BF相交于点M。(1)试说明AE⊥BF. (2)判断线段df与ce的大小关系,并说明为什么.
By accessing the Market Watch link marketwatch.dfm.ae or/and DFM new website on your device, you will be deemed to have read and agreed the 
一)作用力與作用面互相平行之應力,稱為剪應力,如圖13 所示。 圖13. P. P. P. P . 其中AE 稱作軸向剛度(axial rigidity),AE 愈大,變形抵抗愈大。 (五)構件分成數 
D、E 兩點把AB 分成三等份, DF //EG //BC,若BC =24 OD =2, BC =6, DF =3, AB =8,則EF =? 5. ABCD 為平行四邊形,若2 AC =5 AE,且△AEF 面積=40.
如右圖,平行四邊形ABCD 的周長為40,且AB =8,求BC 的長。 如右圖,梯形ABCD 中, BC =18, AE= BE=7, DF=CF =6, EF =14,. 求AD 長?
何性質, 如平行線、 三點共線、 三線共點、 線. 段相等、相似三角形、平行四邊形 等。 證明: 將DF. FE = 1. 2, FA. AE = 1. 2. 代入公. 式I(5), 得到DA. AE = 5. 4 。延長.
・DE// BCならばAD:AB = AE:AC = DE:BC. ・DE// BCなら 【3】下の図で直線 ℓ,m,n が平行のとき,x の値を求めなさい。 答え. 1. DE AE:EB= DF:FCなので,.
在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F; 求证:DF=DC. 魔方格. 2答案(表抄答案,解析更重要>戳这). 魔方格 证明:连接DE.(1分) ∵AD=AE 
2018年5月21日 如图平行四边形ABCD中,AE⊥BC,AF⊥CD,∠EAF=45°,且AE+AF= 2sqrt{2},则平行 周长=2×(BC+DC)>2×(BE+DF)= 4sqrt{2}. 即周长> 
則AD:EF=______。 AD//EF//GH//BC,且AE:EG:BG=3:4:5。若DF的 2倍比HC大6 . ABCD為平行四邊形,若△ABP與△DPC之面積比為2:5;△ADP與△BCP
2012年5月17日 梯形、梯形中位线、三角形中位线、平行线等分. 解:如图,AD、BC分别为上下底,AB=CD,∠B=45°. 过A、D分别作AE、DF垂直于BC,垂足分别